Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest.
نویسندگان
چکیده
Deep brain stimulation (DBS) of the ventrolateral thalamus stops several forms of tremor. Microelectrode recordings in the human thalamus have revealed tremor cells that fire synchronous with electromyographic tremor. The efficacy of DBS likely depends on its ability to modify the activity of these tremor cells either synaptically by stopping afferent tremor signals or by directly altering the intrinsic membrane currents of the neurons. To test these possibilities, whole-cell patch-clamp recordings of ventral thalamic neurons were obtained from rat brain slices. DBS was simulated (sDBS) using extracellular constant current pulse trains (125 Hz, 60-80 micros, 0.25-5 mA, 1-30 s) applied through a bipolar electrode. Using a paired-pulse protocol, we first established that thalamocortical relay neurons receive converging input from multiple independent afferent fibers. Second, although sDBS induced homosynaptic depression of EPSPs along its own pathway, it did not alter the response from a second independent pathway. Third, in contrast to the subthalamic nucleus, sDBS in the thalamus failed to inhibit the rebound potential and the persistent Na+ current but did activate the Ih current. Finally, in eight patients undergoing thalamic DBS surgery for essential tremor, microstimulation was most effective in alleviating tremor when applied in close proximity to recorded tremor cells. However, stimulation could still suppress tremor at distances incapable of directly spreading to recorded tremor cells. These complementary data indicate that DBS may induce a "functional deafferentation" of afferent axons to thalamic tremor cells, thereby preventing tremor signal propagation in humans.
منابع مشابه
Neuronal response to local electrical stimulation in rat thalamus: physiological implications for mechanisms of deep brain stimulation.
High-frequency deep brain stimulation (DBS) of sensorimotor thalamus containing "tremor cells" leads to tremor arrest in humans with parkinsonian and essential tremor. To examine the possible underlying mechanism(s), we recorded in vitro intracellular responses of rat thalamic neurons to local intrathalamic stimulation. Such simulated DBS (sDBS) induced a sustained membrane depolarization accom...
متن کاملMechanisms of deep brain stimulation: an intracellular study in rat thalamus.
High-frequency deep brain stimulation (DBS) in the thalamus alleviates most kinds of tremor, yet its mechanism of action is unknown. Studies in subthalamic nucleus and other brain sites have emphasized non-synaptic factors. To explore the mechanism underlying thalamic DBS, we simulated DBS in vitro by applying high-frequency (125 Hz) electrical stimulation directly into the sensorimotor thalamu...
متن کاملFrequency dependent effects of deep brain stimulation: Clinical manifestations and neural network modelling
Electrical stimulation of deep brain structures has been performed since neurosurgeons began doing stereotactic surgery aimed at the thalamus and basal ganglia. Acute electrical stimulation was used to arrest tremor during brain mapping before burning a thalamotomy lesion. More recently this lead to the use of chronic electrodes (deep brain stimulation, DBS) to treat movement disorders such as ...
متن کاملDisrupting neuronal transmission: mechanism of DBS?
Applying high-frequency stimulation (HFS) to deep brain structure, known as deep brain stimulation (DBS), has now been recognized an effective therapeutic option for a wide range of neurological and psychiatric disorders. DBS targeting the basal ganglia thalamo-cortical loop, especially the internal segment of the globus pallidus (GPi), subthalamic nucleus (STN) and thalamus, has been widely em...
متن کاملMechanisms of deep brain stimulation for essential tremor.
Although essential tremor is often thought of as benign, it can be disabling to the point of justifying invasive deep brain stimulation (DBS). However, the mechanisms by which thalamic and subthalamic stimulation suppress tremor are poorly understood. In this issue of Brain, Groppa et al. (2014) quantified the performance of seven patients with essential tremor in a reaching task to determine t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2006